Using plasma-activated water for decontamination of Salmonella spp. on common building surfaces in poultry houses.

Plasma-activated water (PAW) has been shown to have antimicrobial properties, making it a promising tool for surface decontamination. This study evaluated the ability of PAW generated from high voltage atmospheric cold plasma to remove Salmonella from common surfaces (stainless steel (SS), polyvinyl chloride (PVC), concrete, and wood) found in poultry houses. PAW was generated by exposing distilled water to atmospheric cold plasma in 80% humid air at 90 kV and 60 Hz for 30 min. The resulting PAW contained 1120 ppm of nitrate and 1370 ppm of hydrogen peroxide, with a pH of 1.83. PAW was then applied to coupons of SS, PVC, wood, and concrete surfaces inoculated with 7-8 log CFU of cocktail of Salmonella spp. (S. Typhimurium, S. Newport, S. Montevideo, and S. Enteritidis). PAW effectively reduced Salmonella levels on SS and PVC surfaces to below the detection limit within 30 s. On wood surfaces, a longer treatment time of 7.5 min was required to achieve a maximum reduction of 2.63 log CFU, likely due to the porosity of the wood limiting PAW contact with the bacteria. On concrete surfaces, the reduction in Salmonella levels was only 0.98 log CFU. This was likely due to the greater surface roughness and high alkalinity, which neutralized the PAW species.
Měřínská Tereza, Walker Mitchell, Keener Kevin
Mar 2025
Food microbiology
Cold plasma, Decontamination, Plasma-activated water, Poultry house, Salmonella spp
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.